[image: image5.wmf]

TD <>
DTR/TISPAN-01021-05-01 V.0.0.2 (2004-11)
Technical Report

Mapping of Parlay X Web Services to Parlay/OSA APIs & IMS;

Part 5: Multimedia Messaging Mapping;

Sub-part 1: Mapping to User Interaction
[image: image1.png]V- Y

7/

el

Reference

DTR/TISPAN-01021-05-01-OSA

Keywords

API, OSA, SERVICE

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, send your comment to:
editor@etsi.org
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2004.

© The Parlay Group 2004.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents

5Intellectual Property Rights

Foreword
5
1
Scope
7
2
References
7
3
Definitions and abbreviations
7
3.1
Definitions
7
3.2
Abbreviations
7
4
Mapping Description
8
5
Sequence Diagrams
8
5.1
Send Multimedia Message to One or More Addresses
8
5.2
Notification of Multimedia Message Reception and Retrieval
10
6
Detailed Mapping Information
13
6.1
Operations
13
6.1.1
sendMessage
13
6.1.1.1
Mapping to IpUIManager.createUI
13
6.1.1.2
Mapping to IpUI.sendInfoAndCollectReq
13
6.1.2
getMessageDeliveryStatus
14
6.1.2.1
Mapping from IpAppUI.sendInfoAndCollectRes
14
6.1.2.2
Mapping from IpAppUI.sendInfoAndCollectErr
15
6.1.2.3
Mapping from IpAppUIManager.reportEventNotification
15
6.1.3
startMessageNotification
15
6.1.3.1
Mapping to IpUIManager.createNotification
15
6.1.4
notifyMessageReception
16
6.1.4.1
Mapping from IpAppUIManager.reportEventNotification
16
6.1.5
getReceivedMessages
17
6.1.6
getMessageURIs
17
6.1.7
getMessage
17
6.1.8
stopMessageNotification
17
6.1.8.1
Mapping to IpUIManager.destroyNotification
17
6.2
Exceptions
17
7
Additional Notes
18
Annex A (informative): Change history
19

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Technical Report (TR) has been produced by ETSI Technical Committee TISPAN.

The present document is part 5, sub-part 1, of a multi-part deliverable providing an informative mapping of Parlay X Web Services to the Parlay Open Service Access (OSA) APIs and, where applicable, to IMS, as identified below.

· Part 1 “Common Mapping”

· Part 2 “Third Party Call Mapping”
· Sub-part 1 “Mapping to Generic Call Control”
· Sub-part 2 “Mapping to Multi-Party Call Control”
· Part 3 “Call Notification Mapping"
· Sub-part 1 “Mapping to Generic Call Control”
· Sub-part 2 “Mapping to Multi-Party Call Control”
· Part 4 “Short Messaging Mapping”
· Sub-part 1 “Mapping to User Interaction”
· Sub-part 2 “Mapping to Multi-Media Messaging”
· Part 5 “Multimedia Messaging Mapping”
· Sub-part 1 “Mapping to User Interaction”
· Sub-part 2 “Mapping to Multi-Media Messaging”
· Part 6 “Payment Mapping”
· Part 7 “Account Management Mapping”
· Part 8 “Terminal Status Mapping”
· Part 9 “Terminal Location Mapping”
· Sub-part 1 “Mapping to Mobility User Location”
· Sub-part 2 “Mapping to Mobility User Location CAMEL”
· Part 10 “Call Handling Mapping”
· Sub-part 1 “Mapping to Generic Call Control and User Interaction”
· Sub-part 2 “Mapping to Multi-Party Call Control and User Interaction”
· Sub-part 3 “Mapping to Policy Management”
· Part 11 “Audio Call Mapping”

· Sub-part 1 “Mapping to Generic Call Control and User Interaction”
· Sub-part 2 “Mapping to Multi-Party Call Control and User Interaction”
· Part 12 “Multimedia Conference Mapping”
· Part 13 “Address List Management Mapping”
· Null part: no mapping to Parlay/OSA APIs
· Part 14 “Presence Mapping”

· Sub-part 1 “Mapping to PAM”
· Sub-part 2 “Mapping to SIP/IMS Networks”
The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP.

1
Scope

Should start:

The Parlay X Web Services provide powerful yet simple, highly abstracted, imaginative, telecommunications functions that application developers and the IT community can both quickly comprehend and use to generate new, innovative applications.
One of the following paragraphs should start with:

The Open Service Access (OSA) specifications define an architecture that enables application developers to make use of network functionality through an open standardised interface, i.e. the Parlay/OSA APIs.

IP Multimedia Subsystem (IMS) is a Core Network architecture for supporting multimedia services via a SIP infrastructure.

The present document is part 5, sub-part 1, of an informative mapping of Parlay X Web Services to Parlay/OSA APIs and, where applicable, to IMS.

The present document specifies the mapping of the Parlay X Multimedia Messaging Web Service to the Parlay/OSA User Interaction Service Capability Feature (SCF).

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

[1]
ETSI TR 121 905: "Universal Mobile Telecommunications System (UMTS); Vocabulary for 3GPP Specifications (3GPP TR 21.905)".

[2]
W3C Recommendation (2 May 2001): "XML Schema Part 2: Datatypes".

NOTE:
Available at http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

[3]
DTR-TISPAN-01021-01: "Mapping of Parlay X Web Services to Parlay/OSA APIs; Part 1: Common Mapping".

[4]
W3C Note (11 December 2001): "SOAP Messages with Attachments".

NOTE:
http:///Available at http://www.w3.org/TR/SOAP-attachments.

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in DTR-TISPAN-01021-01 [3] apply.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in DTR-TISPAN-01021-01 [3] and the following apply:

EMS
Enhanced Messaging Service

IM
Instant Messaging

MMS
Multimedia Messaging Service

MMS-C
Multimedia Messaging Service - Centre

SMS
Short Message Service

4
Mapping Description

The Multimedia Messaging capability can be implemented with the Parlay/OSA User Interaction SCF.

It is applicable to ETSI OSA 1.x/2.x,. Parlay/OSA 3.x/4.x and 3GPP 4.x/5.x.
5
Sequence Diagrams

5.1 Send Multimedia Message to One or More Addresses
This describes where an application sends a multimedia message to one or more addresses.

The sequence is displayed sequentially for clarity and is not meant to indicate that subsequent messages are sent on delivery of the previous message.

[image: image2.wmf]UI SCS

MMS-X

Application

2.1: createUI

1: sendMessage

8: getMessageDeliveryStatus

 4.1: sendInfoRes

5.1:release

6.1: reportEventNotification

3.1: sendInfoReq

2.x: createUI

 4.x: sendInfoRes

5.x:release

6.x: reportEventNotification

3.x: sendInfoReq

7.1: release

7.x: release

The

sendMessage

request may contain

many end users.

A

UserInteraction

session is created for

each end user and

released when the

message has been sent.

A notification is

received when a

message is delivered.

.

.

.

1. The application requests the sending of a multimedia message to multiple addresses using sendMessage.

2. The Parlay X Multimedia Messaging Web Service (MMS-X) creates a UI session for an address in the request.

3. The MMS-X sends the message to the UI SCS and requests a message identifier (e.g. a network tracking number) using the sendInfoAndCollectReq method.

4. The UI SCS returns a sendInfoAndCollectRes containing a message identifier for the request.

5. The MMS-X releases the UI session.

6. The UI SCS sends a reportEventNotification containing the message identifier, the message delivery status and the sent message. This method notifies the application of an occurred network event matching specific network delivery status criteria, which were previously installed with an invocation (not shown) of the createNotification method. Such criteria should reference only messages originated by this application.
7. The MMS-X releases the UI session within the notification and stores the delivery status of the message.

8. The application requests the delivery status of the previous multimedia message delivery request using getMessageDeliveryStatus.

5.2 Notification of Multimedia Message Reception and Retrieval

[image: image3.wmf]UI SCS

MMS-X

Application

1: s

tartMessageNotification

7: getReceivedMessages

4.1: reportEventNotification

5.1: release

4.x: reportEventNotification

5.x: release

6.1: notifyMessageReception

6..x: notifyMessageReception

8: getMessageURIs

10

:

stopMessageNotificationn

3:

createNotification()

12:

destroyNotification()

Notification only sent if the event

satisfies all criteria specified in

startMessageNotification

9: getMessage

2: Check if Notification active

11: Check if last active Notification

1. The application registers for the reception of multimedia messages by invoking startMessageNotification. The request includes event criteria consisting of a value for the multimedia message destination address (the messageServiceActivationNumber part) and an optional text string for matching against the first word of the subject of the multimedia message or the first word in the text part of the multimedia message (the criteria part); also a URI for a Web Service implementing the MessageNotification interface on the client application side, and a correlation value for identifying this event registration request.
2. A check is made to see if a notification for the given multimedia message destination address (the messageServiceActivationNumber part) is active. If no notification is active, then the MMS-X requests that a notification be created by the UI SCS (step 3); else a notification is already active (step 3 is skipped).
3. A notification is created by the UI SCS. Note that the optional criteria part (for matching against the first word in the message subject or body) is not sent to the UI SCS.
4. The UI SCS sends a reportEventNotification containing the message identifier, the message delivery status and the received message. MMS-X stores the multimedia message information.
5. The MMS-X releases the UI session within the notification and verifies the event satisfies all criteria specified in startMessageNotification, including matching the first word of the message subject or body against the value of the optional criteria part. If the event is verified, then it stores the delivery status of the message and notifies the application (step 6); else the event is invalid (step 6 is skipped)..

6. The MMS-X notifies the application of the received multimedia message information by invoking the notifyMessageReception method on the application Web Service.

7. The application requests a list of references to received multimedia messages matching the registration identifier using getReceivedMessages.

8. The application retrieves the text portion of a multimedia message associated with one of the message references, and a list of URI file references for any message attachments, by using getMessageURIs.
9. Alternatively, the application retrieves the whole multimedia message associated with one of the message references, by using getMessage.
10. The application terminates an existing registration for the reception of multimedia messages by invoking stopMessageNotification. The request includes the same URI and correlation value, which were previously specified in the earlier startMessageNotification operation (step 1).

11. If the reference sent in stopMessageNotification is for the last active notification for the corresponding destination address (messageServiceActivationNumber) then the notification is destroyed by the UI SCS (step 12); else the notification remain active (step 12 is skipped).
12. The notification is destroyed by the UI SCS.

6
Detailed Mapping Information

6.1
Operations

6.1.1 sendMessage

The sequence diagram in 5.1 illustrates the flow for the sendMessage operation.

The sendMessage operation is synchronous from the Parlay X client’s point of view. It is mapped to the following Parlay/OSA methods:

· IpUIManager.createUI

· IpUI.sendInfoAndCollectReq

6.1.1.1
Mapping to IpUIManager.createUI
The IpUIManager.createUI method is invoked with the following parameters:

Name
Type
Comment

appUI
IpAppUIRef
Reference to callback (internal)

userAddress
TpAddress
Specifies the address to which the message should be sent. It is constructed based on the URI provided in the addresses part of sendMessageRequest, mapped as described in DTR-TISPAN-01021-01 [3]

The result from IpUIManager.createUI is of type TpUIIdentifier and is used internally to correlate the callbacks. Specifically it is correlated with the value of the requestIdentifier part returned to the application in the sendMessageResponse message

Parlay exceptions thrown by IpUIManager.createUI are mapped to Parlay X exceptions as defined in section 6.2.
6.1.1.2 Mapping to IpUI.sendInfoAndCollectReq

The IpUI.sendInfoAndCollectReq method is invoked with the following parameters:

Name
Type
Comment

userInteraction
SessionID
TpSessionID
Reference to callback (internal)

info
TpUIInfo
There is no direct mapping for optional Attachments, reference [4]. One option is to include binary content in-line using the InfoBinData element. Another option is to use the variableInfo parameter (below).

language
TpLanguage
Not mapped.

variableInfo
TpUIVariableInfo
Set
· Some mapping support for the optional Attachments: the web service implementation can create local files for the attachments and provide the SCF with their URI references, by mapping them to VariablePartAddress element(s).

· Some mapping support for the optional subject part: i.e. it could be mapped to a VariablePartInt element.

· Some mapping support for the optional charging part: i.e. it could be mapped to a VariablePartPrice element(s).

· Some mapping support for the optional senderAddress part: i.e. it could be mapped to a VariablePartAddress element.
· Some mapping support for the optional subject part: i.e. it could be mapped to a VariablePartAddress element. However, if this message is mapped to SMS, then this parameter will be used as the sender address, even if a separate senderAddress part is provided.

criteria
TpUICollect
Criteria
Not mapped. Specifies additional properties for the collection of information from the network: i.e. a message identifier for the Multimedia Message.

response
Requested
TpUIResponse
Request
Not mapped. Set to P_UI_RESPONSE_REQUIRED.

The result from IpUI.sendInfoAndCollectReq is of type TpAssignmentID and is used internally to correlate the callbacks. Specifically it is correlated with the value of the requestIdentifier part returned to the application in the sendMessageResponse message

Parlay exceptions thrown by IpUI.sendInfoAndCollectReq are mapped to Parlay X exceptions as defined in section 6.2.
6.1.2 getMessageDeliveryStatus

The sequence diagram in 5.1 illustrates the flow for the getMessageDeliveryStatus operation.

The getMessageDeliveryStatus operation is synchronous from the Parlay X client’s point of view. It is mapped to the following Parlay/OSA methods:

· IpAppUI.sendInfoAndCollectRes

· IpAppUI.sendInfoAndCollectErr

· IpAppUIManager.reportEventNotification

The delivery status provided to the Parlay X client will depend on the timing of the getMessageDeliveryStatus operation invocation. If a message event notification is triggered in the network as a result of an earlier sendMessage operation, then the delivery status information provided in the IpAppUIManager.reportEventNotification callback is mapped. If such a notification is not enabled, or it hasn’t triggered, then the delivery status provided in the IpAppUI.sendInfoAndCollectRes callback is mapped.
6.1.2.1
Mapping from IpAppUI.sendInfoAndCollectRes
The IpAppUI.sendInfoAndCollectRes method is invoked with the following parameters:

Name
Type
Comment

userInteraction
SessionID
TpSessionID
Not mapped. [The value provide in the result from IpUIManager.createUI]

assignmentID
TpAssignmentID
Not mapped. [The value provide in the result from IpUI.sendInfoAndCollectReq]

response
TpUIReport
If the value is P_UI_REPORT_INFO_SENT, then this maps to either the DeliveryUncertain or Delivered values of the DeliveryStatus element of the DeliveryInformation parameter of the deliveryStatus part of a getMessageDeliveryStatusResponse message. There is limited support for the Delivered value as it is dependent upon the SCF implementation and the underlying network protocols (e.g. MM7).

collectedInfo
TpString
The message identifier for the Multimedia Message.

6.1.2.2 Mapping from IpAppUI.sendInfoAndCollectErr

The IpAppUI.sendInfoAndCollectErr method is invoked with the following parameters:

Name
Type
Comment

userInteraction
SessionID
TpSessionID
Not mapped. [The value provide in the result from IpUIManager.createUI]

assignmentID
TpAssignmentID
Not mapped. [The value provide in the result from IpUI.sendInfoAndCollectReq]

error
TpUIError
Maps to the DeliveryImpossible value of the DeliveryStatus element of the DeliveryInformation parameter of the deliveryStatus part of a getMessageDeliveryStatusResponse message.

6.1.2.3 Mapping from IpAppUIManager.reportEventNotification

The IpAppUIManager.reportEventNotification method is invoked with the following parameters:

Name
Type
Comment

userInteraction
TpUIIdentifier
Not mapped. Specifies the reference to the User Interaction interface and the sessionID to which the notification relates.

eventNotification
Info
TpUIEvent
NotificationInfo
The mapping to the deliveryStatus part is as follows:

· the OriginatingAddress element is not mapped

· the DestinationAddress element maps to the Address element of the DeliveryInformation parameter

· the ServiceCode element is not mapped

· the DataTypeIndication element is not mapped, but should have a value of P_UI_EVENT_DATA_TYPE_TEXT
· the UIEventData element (a text string) should identify, using a vendor/operator-specific convention, the specific delivery status event being reported, which can be mapped to any possible value of the DeliveryStatus element of the DeliveryInformation parameter.

assignmentID
TpAssignmentID
Not mapped. [The value provide in the result from IpUIManager.createNotification]

The result from IpAppUIManager.reportEventNotification is of type IpAppUIRef and is used internally to correlate with the User Interaction interface instance (i.e. of type IpUI) associated with the event notification. This callback reference result parameter may be set to a default value since there is no further interaction with this message delivery status-related UI instance: the IpUI.release method is invoked as shown in section 5.1 (step 7).
6.1.3
startMessageNotification

The sequence diagram in 5.2 illustrates the flow for the startMessageNotification operation, which is mapped to the Parlay/OSA method: IpUIManager.createNotification
6.1.3.1
Mapping to IpUIManager.createNotification
The IpUIManager.createNotification is invoked with the following parameters:

Name
Type
Comment

appUIManager
IpAppUIManagerRef
Not mapped. Reference to callback (internal)

eventCriteria
TpUIEvent
Criteria
Specifies the event notification criteria, consisting of 3 elements:

· The OriginatingAddress is not mapped. It is set to be valid for all senders

· The DestinationAddress is constructed based on the URI provided in the messageServiceActivationNumber part of startSmsNotification, mapped as described in DTR-TISPAN-01021-01 [3]

· The ServiceCode element is not mapped.

Note that the optional criteria part is not mapped to this method. It is used to parse events reported using the IpAppUIManager.reportEventNotification before invoking the notifyMessageReception operation

The result from IpUIManager.createNotification is of type TpAssignmentID and is used internally to correlate the callbacks. Specifically it is correlated with the value of the reference part received from the application in the startMessageNotificationRequest message and the correlator part returned to the application in the notifyMessageReceptionRequest message

Parlay exceptions thrown by IpUIManager.createNotification are mapped to Parlay X exceptions as defined in section 6.2.

6.1.4
notifyMessageReception

The sequence diagram in 5.2 illustrates the flow for the notifyMessageReception operation, which is mapped from the Parlay/OSA method: IpAppUIManager.reportEventNotification.

6.1.4.1
Mapping from IpAppUIManager.reportEventNotification
The IpAppUIManager.reportEventNotification method is invoked with the following parameters:

Name
Type
Comment

userInteraction
TpUIIdentifier
Not mapped. Specifies the reference to the User Interaction interface and the sessionID to which the notification relates.

eventNotification
Info
TpUIEvent
NotificationInfo
The mapping to the message part is as follows:

· the OriginatingAddress element maps to the senderAddress element

· the DestinationAddress element maps to the messageServiceActivationNumber element

· the ServiceCode element is not mapped

· if the event-related message is ASCII text, then the DataTypeIndication element has a value of P_UI_EVENT_DATA_TYPE_TEXT, and the UIEventData element should contain the message, using a vendor/operator-specific convention, which maps to the message element. In this case the messageIdentifier element is absent.

· if the event-related message is not ASCII text, then the UIEventData element should contain the message, using a vendor/operator-specific convention – also see note below. The multimedia message is stored by the Parlay X Multimedia Messaging Web Service. The latter returns a reference to this stored message in the messageIdentifier element. In this case the message element is absent.

assignmentID
TpAssignmentID
Not mapped. [The value provide in the result from IpUIManager.createNotification]

Note that there is no direct mapping for Attachments. Binary content may be included in-line in the UIEventData element of the eventNotificationInfo parameter. Alternatively, the messaging system implementation could create local file(s) for the attachment(s) and provide the SCF with their URI reference(s). These URI reference parameters and others – e.g. that map to fileReferences, priority, bodyText and subject parts - could also be encoded in the UIEventData element of the eventNotificationInfo parameter.
The result from IpAppUIManager.reportEventNotification is of type IpAppUIRef and is used internally to correlate with the User Interaction interface instance (i.e. of type IpUI) associated with the event notification.

6.1.5
getReceivedMessages

The sequence diagram in 5.2 illustrates the flow for the getReceivedMessages operation. It is not explicitly mapped to any Parlay/OSA method. Instead, the getReceivedMessages operation is a bulk retrieval capability for received multimedia messages previously and individually delivered to the Parlay X client via the notifyMessageReception operation.
6.1.6
getMessageURIs

The sequence diagram in 5.2 illustrates the flow for the getMessageURIs operation. It is not explicitly mapped to any Parlay/OSA method. Instead, the getMessageURIs operation is a retrieval capability for a received multimedia message whose reference was previously obtained by the Parlay X client via the notifyMessageReception or getReceivedMessages operations.
6.1.7
getMessage

The sequence diagram in 5.2 illustrates the flow for the getMessage operation. It is not explicitly mapped to any Parlay/OSA method. Instead, the getMessage operation is a retrieval capability for a received multimedia message whose reference was previously obtained by the Parlay X client via the notifyMessageReception or getReceivedMessages operations.
6.1.8 stopMessageNotification
The sequence diagram in 5.2 illustrates the flow for the stopMessageNotification operation, which is mapped to the Parlay/OSA method: IpUIManager.destroyNotification
6.1.8.1
Mapping to IpUIManager.destroyNotification
The IpUIManager.destroyNotification is invoked with the following parameters:

Name
Type
Comment

assignmentID
TpAssignmentID
Not mapped. [The value provide in the result from IpUIManager.createNotification and correlated with the value of the reference part received from the application in both the original startMessageNotificationRequest message and the stopMessageNotificationRequest message]

Parlay exceptions thrown by IpUIManager.destroyNotification are mapped to Parlay X exceptions as defined in section 6.2.

6.2 Exceptions

In addition to the common mapping of Parlay/OSA API method exceptions to Parlay X Web Service exceptions, which is defined in DTR-TISPAN-01021-01 [3], there are the following service-specific exception mappings:
Error Value
Exception
Notes

P_ILLEGAL_ID
SVC0002
Invalid input value

P_ID_NOT_FOUND
SVC0001
Service error

P_ILLEGAL_RANGE
SVC0001
With error number

P_INVALID_COLLECTION_CRITERIA
SVC0001
With error number

P_INVALID_CRITERIA
SVC0230
Overrides common mapping in [3]

7
Additional Notes

No additional notes are provided.

Annex A (informative):
Change history

Document history

v.0.0.1
October 2004
1st draft of DTR-TISPAN-01021-05-01. Derived in part from PX WG contribution: “MappingOfParlayXToParlayOSA_v03” and from AePONA product documentation.

v.0.0.2
November 2004
2nd draft of DTR-TISPAN-01021-05-01. Revised based on discussion and action items recorded at JWG Meeting #29 in Barcelona, Spain. In particular, added mapping detail for the new functions specified in contribution: “N5-040879 29199-05 PXWS Multimedia Messaging MessageNotificationManager”.

� 	There is no direct mapping for Attachments. Binary content may be included in-line in the UIEventData element of the eventNotificationInfo parameter. Alternatively, the messaging system implementation could create local file(s) for the attachment(s) and provide the SCF with their URI reference(s). These URI reference parameters and others – e.g. that map to fileReferences, priority, bodyText and subject parts - could also be encoded in the UIEventData element of the eventNotificationInfo parameter

[image: image5.wmf]_1160203340.doc

UI SCS

1: registerMessageReception

MMS-X

Application

2.1: reportEventNotification

7: getMessage

6: getMessageURIs

5: getReceivedMessages

3.x: release

2.x: reportEventNotification

4.x: notifyMessageReception

4: notifyMessageReception

3.1: release

Registration will be performed offline and is not part of the Parlay X access interface.

_1163960909.doc

UI SCS

1: startMessageNotification

MMS-X

Application

3: createNotification()

12: destroyNotification()

4.1: reportEventNotification

9: getMessage

8: getMessageURIs

7: getReceivedMessages

10: stopMessageNotificationn

5.x: release

4.x: reportEventNotification

6..x: notifyMessageReception

6.1: notifyMessageReception

5.1: release

11: Check if last active Notification

Notification only sent if the event satisfies all criteria specified in startMessageNotification

2: Check if Notification active

_1160192683.doc

UI SCS

1: sendMessage

MMS-X

Application

6.x: reportEventNotification

2.1: createUI

6.1: reportEventNotification

5.x:release

3.x: sendInfoReq

8: getMessageDeliveryStatus

 4.1: sendInfoRes

5.1:release

3.1: sendInfoReq

 4.x: sendInfoRes

2.x: createUI

7.1: release

7.x: release

The sendMessage request may contain many end users.

A UserInteraction session is created for each end user and released when the message has been sent.

A notification is received when a message is delivered.

.

.

.

_1065009619.doc

